21st edition of the Pacific Coast Protease Workshop

Palm Canyon Resort Borrego Springs, California

April 27th – 29th 2025

Organized by Matt Bogyo, Olivier Julien, Anthony O'Donoghue, Antoine Dufour and Kasia Groborz

ABOUT THE WORKSHOP

This workshop is designed to provide a stimulating expert environment for the discussion of new information on proteolytic enzymes, their substrates, their inhibitors, and their function.

The objective is to provide trainees (junior faculty, post-docs, and graduate students) with experience in presenting their work to an expert audience, chairing scientific sessions, and to foster collaborations. Expert external faculty will give guest presentations and stimulate discussions.

The work presented here is state-of-the-art and much is yet to be published. Consequently, professional use of the data and ideas learned at the workshop is prohibited without the expressed consent of the respective presenters and their supervisors.

There will be awards at the end of the workshop, including the coveted "Half Moon" for the best presentation.

SPONSORS

Pacific Coast Protease Spring School is pleased to recognize support by:

The Microplate Reader Company

PRESENTATIONS AND ABSTRACTS

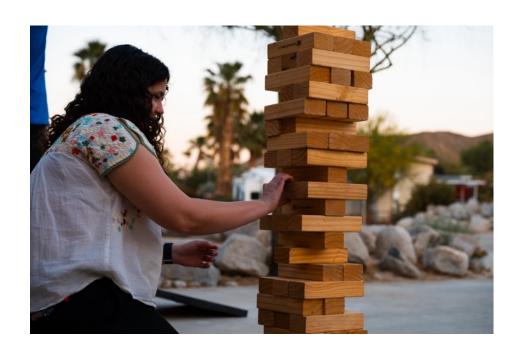
Trainee talks are 15 min (12 min + 3 min discussion).

Guest faculty talks are 30 min (25 min + 5 min discussion).

Speaker abstracts are listed in order of presentation.

Sunday, April 27th

3:00 pm


Matt Bogyo, Olivier Julien, Anthony O'Donoghue, Antoine Dufour

Welcome!

Location: Conference Room

Chairs: Kolden van Baar and Althea Hansel

Time	Speaker	Title	Lab
3:20 pm	Amy Weeks	New enzyme chemistry to decipher post- translational modification function	Outside Expert (University of Wisconsin Madison)
3:50 pm	Alyssa Carter	Utilizing Oxadiazolone-Based Probes to Define the Role of FabH in C. difficile Sporulation and Bogyo Germination	
4:05 pm	Kasia Groborz	Grasping life from the throes of death: Lazarus effect of tailored caspase inhibitors Unaffiliated	
4:20 pm	Taylor Bader	Defining the Role of the Protease HTRA1 on Spinal Deformities Using Proteomic Profiling of Intervertebral Disc Components	Dufour
4:35 pm	Isabella Ruud	Engineered BoNT/E protease variants cleave neurodegenerative disease targets	O'Donoghue/ Chavez
4:50 pm	·	10 min Discussion	
5:00 pm	Coffee break	Location: Conference Room	

Chairs: Rachell Martinez-Ramirez and Shiyu Chen

Time	Speaker	Title	Lab
5:20 pm	Amit Bhavsar	Cutting through the noise: uncovering the role of matrix metalloproteinases in cisplatin-induced hearing loss	Outside Expert (University of Alberta)
5:50 pm	Tulsi Upadhyay	Covalent-fragment screening identifies selective inhibitors of multiple Staphylococcus aureus serine hydrolases important for virulence and biofilm formation	Bogyo
6:05 pm	Alessandra Riccio	Unraveling the catalytic machinery of Bfp1: a structure-based computational study	Forli
6:20 pm	Jiapeng Li	Targeting Viral Protease with Optimized Activity and Bioavailability: AVI-4773, A Main Protease (Mpro) Inhibitor with Broad-Spectrum Activity Against Multiple Coronaviruses and High Drug Exposure in the Lung and Brain	Craik
6:35 pm	Jehad Almaliti	Development of Macrocyclic Peptide-Based Proteasome Inhibitors with Enhanced Blood- Brain Barrier Penetration for Treating Brain Neoplasms	O'Donoghue/ Gerwick
6:50 pm	Isabella Orchard	Thrombin fuels pathogenic behavior of gut microbiota biofilms in Crohn's disease: a proteomic/N-terminomic approach	Dufour
7:30 pm	Dinner	Big Horn Burgers & Shakes (Palm Canyon Hotel & RV Resort)	

Monday, April 28th

Chairs: Alyssa Carter and Duno Dantis

Time	Speaker	Title	Lab
8:30 am	Breakfast	Location: Conference Room	
9:00 am	John Widen	Working in Biotech from an Early Career Perspective	Outside Expert (Tenvie Therapeutics)
9:30 am	Cody Loy	Immunoproteasome-Mediated Release of a Monomethyl Auristatin E Prodrug	
9:45 am	Eric Jordahl	Characterizing the role of the rhomboid protease RHBDL4 in pancreatic cancer	
10:00 am	Kolden van Baar	The inflammatory caspases and their substrates Julien	
10:15 am		15 min Discussion	
10:30 am	Coffee break	Location: Conference Room	

Chairs: Isabella Orchard and Jiapeng Li

Time	Speaker	Title	Lab
11:00 am	Shiyu Chen	Sequential AND-gate Fluorescently Quenched Activity-based Probe for Selective Imaging of Cysteine Cathepsin Activity	Bogyo
11:15 pm	Jainilkumar Patel	Identifying caspase-8 and caspase-10 substrates	
11:30 am	Shih-Po Su	Development of a caspace1-activated SWIR fluorescent probe for tumor detection and therapeutic monitoring	Bogyo
11:45 am	Kyle Lesack	PCPSV: Profiling Caenorhabditis elegans Proteases under Structural Variation	Dufour
12:00 pm	Lunch	Location: Conference Room (salads & sandwiches)	
1:00 pm	Borrego Springs	Hike (Slot Canyon Trail)	
7:00 pm	Dinner	Pablito's Mexican Bar & Grill	
8:00 pm		Trivia Night	

Tuesday, April 29th

Chairs: Tulsi Upadhyay and Cody Loy

Time	Speaker	Title	Lab
8:30 am	Breakfast	Location: Conference Room	
9:00 am	Stefano Forli	Cosolvent Molecular Dynamics for discovery and characterization of protein binding sites	Outside Expert (Scripps)
9:30 am	Jeyun Jo	Oxadiazolone-based Probes for Selective Detection of Implant Biofilms in Chronic Staphylococcus aureus Infections	Bogyo
9:45 am	Althea Hansel	Ab initio computational modeling of covalent macrocyclic FphB serine hydrolase inhibitors	Forli
10:00 am	Justin Zabos	Proteomic Study of H1N1 Influenza Infection in Mammalian Cells	Julien
10:15 am	Vic Hempstead	Covalent PSMA-based probe library for targeted prostate cancer therapeutics	Bogyo
10:30 am	Coffee break	Location: Conference Room	

Chairs: Jainilkumar Patel and Eric Jordahl

Time	Speaker	Title	Lab
11:00 am	Jiyun Zhu	Design, Synthesis and Characterization of Chemi- luminescent Probes for non-invasive Diagnostic Imaging	Bogyo
11:15 am	Diego Trujillo	Evaluating the 20S proteasome of the early- branching eukaryote Giardia lamblia as a valuable O'Dono drug target	
11:30 pm	Kristyna Blazkova	Identification of microbial proteases that regulate a Protease-activated receptor 2 to control barrier Bogyo function, pain and inflammation in the gut	
11:45 pm		15 min Discussion	
12:00 pm	Lunch	Location: Conference Room (sandwiches & salad)	·-

Chairs: Kristyna Blazkova and Jehad Almaliti

Time	Speaker	Title	Lab
1:00 pm	Jim Janetka	Aspartic proteases as novel therapeutic targets in parasitic worms	Outside Expert (Washington University)
1:30 pm	Rachell Martinez- Ramirez	Allosteric Role of Heparin on Human β-Tryptase Structure and Activity	Lazarus
1:45 pm	Duno Dantis	Development of Immunoproteasome Substrate Labeling Assays (iSLAy)	Trader
2:00 pm		15 min coffee break	
2:15 pm	Ifeanyichukwu Eke	Phenotypic screening of covalent fragment libraries for growth inhibitors of Staphylococcus aureus	Bogyo
2:30 pm	Kyle Anderson	Structure-guided Identification of Serine Protease Inhibitors from Biased Fab Phage-display Libraries	Craik
2:45 pm	Xilin Gu	Structure-Based Design of Inhibitors of the Mycobacterium tuberculosis 20S Proteasome Suppress Persistence of the Bacterium in Infected Macrophages	
3:00 pm	Laney Flanagan	Investigation of cysteine proteases in Bacteroides cellulosilyticus for desensitization of Protease-activated receptor 2	Bogyo
3:15 pm	3:15 pm 15 min Discussion		
	Free time		
7:00 pm	Dinner	Carlee's Bar & Grill	
	Awards	Palm Canyon Hotel & RV Resort	

Wednesday, April 30th

9:00 am	Denarture	
3.00 am	Departure	

Emails

mbogyo@stanford.edu	vanbaar@ualberta.ca
tulsiu@stanford.edu	jainilku@ualberta.ca
jiyunzhu@stanford.edu	jzabos@ualberta.ca
jeyunjo@stanford.edu	ejordahl@ucsd.edu
amcarter@stanford.edu	dtrader@uci.edu
blazkova@stanford.edu	loyc@uci.edu
shihposu@stanford.edu	jdantis@uci.edu
sc5900@stanford.edu	kasiagroborz@caspase.me
ekeifean@stanford.edu	lazarus.bob@gene.com
vmhemp@stanford.edu	martr166@gene.com
ariccio@scripps.edu	xilin.gu@ucsf.edu
ahansel@scripps.edu	marcin.drag@pwr.edu.pl
ajodonoghue@health.ucsd.edu	gsalvesen@sbpdiscovery.org
dtrujill@health.ucsd.edu	scottsnipas@gmail.com
iruud@health.ucsd.edu	forli@scripps.edu
jalmaliti@ucsd.edu	janetkaj@wustl.edu
Jiapeng.Li@ucsf.edu	amweeks@wisc.edu
kyle.anderson@ucsf.edu	widen@tenvie.com
antoine.dufour@ucalgary.ca	apbhavsa@ualberta.ca
taylor.bader2@ucalgary.ca	isabella.orchard@ucalgary.ca
kyle.lesack1@ucalgary.ca	laneyf@stanford.edu
ojulien@ualberta.ca	

Utilizing Oxadiazolone-Based Probes to Define the Role of FabH in *C. difficile* Sporulation and Germination

<u>Alyssa M. Carter</u>¹, Gregory Harrison², Daniel Bak³, Eranthie Weerpana³, Aimee Shen², Matthew Bogyo^{1,4}

¹Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA

²Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA

³Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA Department of Pathology, Stanford University School of Medicine⁴, Stanford, CA 94305, USA

Clostridioides difficile (C. difficile) is a gram-positive, spore-forming bacterium that releases toxins, damages the gut epithelium, and induces diarrheal disease upon the depletion of commensal gut microbiota after use of broad-spectrum antibiotics. Once formed, C. difficile spores are metabolically dormant and resist antibiotic treatment, which allows C. difficile to persist in the gut and creates an urgent need for new therapeutics. When incubated with C. difficile, oxadiazolone-based covalent probes inhibit vegetative

growth as well as spore formation and subsequent Chemoproteomic outgrowth. analysis with oxaziazolone-probe reveals that ß-ketoacyl-ACP synthase III (FabH), the enzyme that catalyzes the first step in the bacterial fatty acid synthesis pathway, is enriched by these probes (Fig 1). While many bacteria can subvert the use of FabH by trafficking exogenous lipids, C. difficile utilizes the FapR regulatory system, which does not allow for complete subversion of the pathway, suggesting C. difficile FabH (CdFabH) is a promising target for a therapeutic that selectively disrupts C. difficile spore formation and outgrowth while leaving commensal gut microbiota intact, which could be a key strategy for preventing recurrent infection of C. difficile. Thus, we aim to 1) develop potent covalent inhibitors specific to CdFabH, 2) validate CdFabH as a therapeutic target to selectively disrupt spore formation and subsequent outgrowth of the C. difficile spore, and 3) define the role of FabH in C. difficile spore formation and germination.

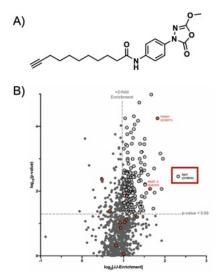


Fig 1: Target identification of covalent probe. A) Structure of oxadiazolone-based probe, JJ-OX-004. B) Chemoproteomic enrichment of JJ-OX-004 with *C. difficile* cell lysate. The most enriched protein is FabH (red box).

Grasping life from the throes of death: Lazarus effect of tailored caspase inhibitors

<u>Kasia Groborz^{1, 2}</u>, Melissa Truong¹, Irma Stowe¹, Bettina Lee¹, Marcin Poreba², Kim Newton¹, Vishva Dixit¹

Programmed cell death is a tightly regulated process orchestrated by cysteine proteases known as caspases. While apoptotic caspases selectively cleave intracellular substrates to drive controlled cell dismantling, inflammatory caspases initiate the maturation of proinflammatory cytokines and promote innate immune responses to infection. Caspases mediate several forms of programmed cell death, including apoptosis and pyroptosis. Although both processes share some morphological features, a key distinction lies in their immunological consequences: apoptosis is largely immunologically silent, whereas pyroptosis results in plasma membrane rupture and the release of proinflammatory intracellular contents.

Over the years, numerous caspase inhibitors have been developed and evaluated in preclinical models. Despite initial promise, many of these compounds failed in clinical trials, often due to off-target toxicity, including liver damage. In this study, we introduce a new approach that seeks to selectively manipulate cell death pathways by targeting cells already undergoing inflammatory demise.

We generated a focused library of over 100 tetrapeptide-based caspase inhibitors bearing a reactive acyloxymethyl ketone (AOMK) warhead. Using comprehensive kinetic profiling across all human caspases, we identified several compounds exhibiting improved selectivity toward individual members of caspase family. These inhibitors were subsequently tested in cell-based models of cell death to evaluate their functional selectivity and biological activity in complex cellular environments. Our results indicate that applying a dual selectivity strategy—leveraging membrane changes during pyroptosis alongside structurally optimized caspase inhibitors—can significantly alter the biological outcomes of inflammatory insult and opens new therapeutic avenues for targeted immune modulation.

¹Department of Physiological Chemistry, Genentech, USA

²Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Poland

Defining the Role of the Protease HTRA1 on Spinal Deformities Using Proteomic Profiling of Intervertebral Disc Components

<u>Taylor J. Bader</u>¹, Paul Salo^{1,2}, David A. Hart¹, Holly Sparks¹, Ganesh Swamy^{1,2}, Antoine Dufour¹

¹Cumming School of Medicine, University of Calgary, Canada, ²Foothills Medical Centre, Canada

As individuals age their intervertebral discs (IVD), the dominant stabilizers of the spine, degenerate. As escalation of this breakdown is known as degenerative disc disorders (DDD), which can lead to debilitating pain through the structural failure of the IVD and spinal deformities (SD). The etiology of these conditions is not well understood. Previous studies found reductions in the shear stiffness in DDD and SD patients IVD tissue collected from the operating theatre when compared to healthy donor tissue. Pilot proteomics analysis found increased amounts of HTRA1, a serine protease associated with DDD, was upregulated in these same tissues. To test if HTRA1 is a key upstream driver of the development of structural instability, we aim to; 1. further refine and characterize the proteomes of the AF using shotgun and extracellular matrix enrichment proteomics protocols, 2. identify which proteins are degraded by HTRA1 and other proteases using degradomics, and 3. investigated changes in degeneration of ex-vivo lab models using HTRA1 inhibitors. Understanding the differences in proteins, how they are being cleaved between conditions, and how HTRA1 impacts them will not only provide insight into knowing how these painful conditions are progressing but also help establish new ways to potentially inhibit disease progression.

Engineered BoNT/E protease variants cleave neurodegenerative disease targets

Bruce Culbertson^{1*}, <u>Isabella Ruud</u>^{2*}, Andrea Pence^{2,3}, Reema Apte², Farhad Forouhar⁴, Pavla Fajtova³, Anthony J. O'Donoghue³, Alejandro Chavez⁵, *equal contribution

¹Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032

²Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093

³Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093

⁴Department of Pathology and Cell Biology and Columbia University Digestive and Liver Disease Research Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, 10032

⁵Department of Pediatrics, University of California San Diego, La Jolla, CA 92123

The targeted degradation of pathogenic, aggregation-prone proteins is a promising mechanism to treat neurodegenerative diseases, but the difficulty of dictating proteasesubstrate interactions limits the development of such therapeutics. Here, we engineer the botulinum neurotoxin type E (BoNT/E) protease using random and structure-guided mutagenesis to generate protease variants that are selected for activity on a desired substrate using a circuit that links substrate cleavage to Saccharomyces cerevisiae growth. Using this platform, we first targeted a substrate in ataxin3 (ATXN3), a protein whose aggregation causes spinocerebellar ataxia type 3. We evolved BoNT/E towards the ATXN3 substrate using a series of intermediate substrates that incorporate increasing numbers of residues from the ATXN3 substrate into the canonical BoNT/E substrate, SNAP25. We were able to demonstrate robust BoNT/E activity on the ATXN3 substrate. effectively re-programming 16/21 of the substrate residues implicated in its recognition. Substrate profiling of BoNT/E variants that emerged during the ATXN3 engineering campaign revealed patterns that could direct towards other clinically relevant targets. From these patterns, we identified a cleavable motif in TAR DNA-binding protein 43 (TDP43), a protein whose mislocalization and subsequent cytoplasmic aggregation is seen in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar disease (FTLD). Using structure-guided mutagenesis, we rapidly engineered a BoNT/E variant capable of cleaving the TDP43 substrate in a single step, despite changing 19/21 of the residues in the substrate recognition motif. Further engineering led to a BoNT/E variant with activity on full-length TDP43 in mammalian cells and no activity on SNAP25. There is evidence that cleavage at this site ameliorates TDP43-induced toxicity in yeast and mammalian cell models, making it an attractive therapeutic target for further development.

Covalent-fragment screening identifies selective inhibitors of multiple Staphylococcus aureus serine hydrolases important for virulence and biofilm formation

<u>Tulsi Upadhyay</u>¹, Emily C. Woods¹, Stephen D. Ahator³, Kjersti Julin³, Franco F. Faucher², Md Jalal Uddin³, Marijn J. Hollander¹, Nichole J. Pedowitz¹, Daniel Abegg⁴, Isabella Hammond¹, Ifeanyichukwu E Eke¹, Sijie Wang¹, Shiyu Chen¹, John M. Bennett², Jeyun Jo¹, Christian S. Lentz³, Alexander Adibekian⁴, Matthias Fellner⁵ and Matthew Bogyo^{1,6}

⁴Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, 60607 USA

⁶Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA

Staphylococcus aureus is a leading cause of bacteria-associated mortality worldwide. This is largely because infection sites are often difficult to localize and the bacteria forms biofilms which are not effectively cleared using classical antibiotics. Therefore, there is a need for new tools to both image and treat *S. aureus* infections. We previously identified a group of S. aureus serine hydrolases known as fluorophosphonatebinding hydrolases (Fphs), which regulate aspects of virulence and lipid metabolism. However, because their structures are similar and their functions overlap, it remains challenging to distinguish the specific roles of individual members of this family. In this study, we applied a high-throughput screening approach using a library of covalent electrophiles to identify inhibitors for FphB, FphE, and FphH. We identified inhibitors that irreversibly bind to the active-site serine residue of each enzyme with high potency and selectivity without requiring extensive medicinal chemistry optimization. Structural and biochemical analysis identified novel binding modes for several of the inhibitors. Selective inhibitors of FphH impaired both bacterial growth and biofilm formation, while inhibitors of FphB and FphE significantly affected bacterial virulence. These results suggest that all three hydrolases likely play functional, but distinct roles in biofilm formation and virulence. Overall, we demonstrate that focused covalent fragment screening can be used to rapidly identify highly potent and selective electrophiles targeting bacterial serine hydrolases. This approach could be applied to other classes of lipid hydrolases in diverse pathogens or higher eukaryotes.

¹Department of Pathology, Stanford School of Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA

²Department of Chemistry, Stanford University, Stanford, CA, USA

³Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS) UiT, The Arctic University of Norway, 9037 Tromsø, Norway

⁵Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand

Unraveling the catalytic machinery of Bfp1: a structure-based computational study

<u>Alessandra Riccio¹</u>, Kristyna Blazkova², Matthew Holocomb¹, Mattehw Bogyo^{2,3} and Stefano Forli¹

Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) related to several physiopatological conditions including pain, cancer, metabolic diseases and inflammation. In this context, it has been shown that an excessive proteolysis in the gut and subsequent PAR2-signaling have been linked to inflammatory-bowel diesease (IBD) and irritable bowl syndrome (IBS) severity and related intestinal pain. Bfp1, a member of the S41 family of serine proteases, has been identified as a gut-secreted enzyme capable of activating PAR2 by cleaving the N-terminal RSLIGKD sequence, thereby triggering receptor activation. While it is known that cleavage occurs between the arginine (R) and serine (S) residues within the PAR2 substrate sequence, the catalytic mechanism of Bfp1 remains uncharacterized due to a lack of structural data. Since S41 proteases could use either the dyad (Ser-His/Lys) or tetrad (Ser-His-Ser-Glu) of residues present in its binding site in a catalytic arrangement, we investigated the molecular basis of Bfp1 functions using structure-based approaches. First, a structural homology search using Foldseek against a curated dataset of 74 crystallized serine proteases identified Ser449 as a conserved nucleophile and subsequent structural analysis of Bfp1 revealed His124 in close proximity to Ser449, suggesting a catalytic dyad arrangement. AlphaFold3 aided in modeling the interaction between Bfp1 and the PAR2-derived Nterminal motif, yielding a high-confidence structural prediction score (pTM = 0.84). The predicted binding site was further validated by aligning the Bfp1-PAR2 complex with the crystal structure of a homologous protease in complex with a peptidomimetic ligand. The observed match between the experimentally validated ligand-binding pocket and the predicted PAR2 interface supports a shared recognition site, suggesting a conserved functional role for this region and further reinforcing the structural plausibility of the modeled substrate-binding pocket. The MD-based method Cosolvkit was then employed to analyse the Bfp1 binding site using a mix of fragments selected to reflect the physicochemical properties of the PAR2 peptide sequence, especially mapping polar and charged residues as well as key hydrophobic features in the RSLIGKD motif. As a result, elevated hydrophobic interactions were observed surrounding Ser449, matching the hypothesized position of the leucine-isoleucine-glycine (LIG) motif in the AlphaFold3 model of the Bfp1-PAR2 complex. Altogether, our results suggest that Bfp1 cleaves PAR2 via a Ser-His dyad, with substrate recognition driven by a specific pocket that accommodates hydrophobic residues. This study provides the first structural characterization of the Bfp1 catalytic mechanism and lays the groundwork for the rational design of novel inhibitors targeting Bfp1-mediated PAR2 activation, offering a promising therapeutic strategy for the treatment of IBD and IBS.

¹Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, United States

²Department of Pathology, Stanford University School of Medicine; Stanford, CA, USA ³Department of Microbiology and Immunology, Stanford University School of Medicine; Stanford, CA, USA

Targeting Viral Protease with Optimized Activity and Bioavailability: AVI-4773, A Main Protease (M^{pro}) Inhibitor with Broad-Spectrum Activity Against Multiple Coronaviruses and High Drug Exposure in the Lung and Brain.

<u>Jiapeng Li</u>,¹ Luca Lizzadro,¹ Gilles Degotte,¹ Taha Y. Taha,² Tyler C. Detomasi,¹ Kris White,³ Briana McGovern,³ Francisco J. Zapatero-Belinchon,² Eric R. Hantz,¹ Sijie Huang,¹ Amy Diallo,⁴ Nevan J. Krogan,⁵ Kliment A. Verba,⁴ Brian K. Shoichet,¹ Melanie Ott,² Adam R. Renslo,¹ Charles Craik¹,*

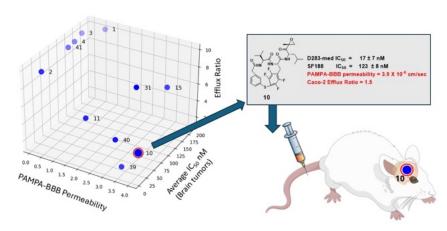
¹Department of Pharmaceutical Chemistry, University of California, San Francisco (UCSF), San Francisco, CA, USA. ² Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA. ³ Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁴ Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), San Francisco, CA, USA. ⁵ Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, USA.

The main protease (M^{pro}) is responsible for the proteolytic processing of the viral polyprotein essential for viral replication. M^{pro} is conserved across various coronaviruses, including SARS-CoV, SARS-CoV-2, and MERS-CoV. Coronaviruses are often highly contagious and quickly spread among animals and human communities. It is important to have an effective <u>oral drug</u> that can be conveniently used. Despite the SARS-CoV-2 virus becoming endemic, challenges remain: First, <u>many antivirals have limited drug exposure in the lungs and brain</u>. In particular, the brain can be employed by SARS-CoV-2 as a reservoir due to the blood-brain barrier (BBB). Available antivirals, such as remdesivir, nirmatrelvir, and ensitrelvir, cannot achieve adequate concentrations in the brain. Additional concerns are emergent <u>drug-resistance mutations and other coronaviruses</u> that could avoid current treatments.

We discovered an innovative antiviral M^{pro} inhibitor compound AVI-4773-P1 that adopts a weakly electrophilic alkyne warhead covalently binding to the active site (Cys145) of SARS-CoV-2 M^{pro} as a latent electrophile. AVI-4773-P1 showed an IC₅₀ of 2.5 nM against *in vitro* SARS-CoV-2 M^{pro} protease, stronger than nirmatrelvir (IC₅₀= 3.3 nM) and ensitrelvir (IC₅₀= 4 nM). AVI-4773-P1 also exerted strong antiviral efficacy against MERS-CoV and SARS-CoV. Meanwhile, AVI-4773 achieves outstanding oral bioavailability and drug exposure in the lungs and brain, with five-fold higher concentrations in the brain than ensitrelvir. As a result, AVI-4773-P1 dramatically reduced the viral titers of SARS-CoV-2 and MERS-CoV by one-million- and ten-thousand-fold, respectively, in mice within two days, significantly stronger than nirmatrelvir and ensitrelvir that reduced viral titers by only one hundred-fold or even less.

Development of Macrocyclic Peptide-Based Proteasome Inhibitors with Enhanced Blood-Brain Barrier Penetration for Treating Brain Neoplasms

<u>Jehad Almaliti^{1,2*},</u> Momen Al-Hindy¹, Pavla Fajtová³, Evgenia Glukhov¹, Theodore Berger¹, Yan Graf¹, Cesar Emiliano Hoffmann da Silva³, Chandler Huang¹, Narek Azizyan¹, Yuxian He¹, Anthony J. O'Donoghue³, and William H. Gerwick^{1,3}


¹Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States

²Department Pharmaceutical Sciences, College of Pharmacy, the University of Jordan, Amman, 11942, Jordan

³Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States

Proteasome inhibitors have transformed the treatment of hematologic malignancies; however, their efficacy against solid tumors—especially brain cancers remains limited due to poor cellular permeability, low chemical stability, and restricted penetration across the blood-brain barrier (BBB). In this study, we employed a multilayered screening approach to design and evaluate novel macrocyclic peptide epoxyketone-based proteasome inhibitors with improved drug-like characteristics. We began by synthesizing a series of new analogs, which were then screened for cytotoxicity against both brain and non-brain cancer cell lines. Several compounds demonstrated potent activity, with IC₅₀ values below 100 nM. The most promising candidates were further assessed using the PAMPA-BBB assay to predict in vivo BBB permeability. alongside evaluations for microsomal and plasma stability, as well as Caco-2 cell permeability. Among the compounds tested, fluorinated macrocyclic analogs particularly compound 10 —exhibited enhanced cell permeability, selective inhibition of the β5 proteasome subunit, and strong *in vitro* cytotoxic effects. *In vivo* pharmacokinetic studies in mice confirmed that compound 10 possesses favorable plasma stability and efficiently crosses the BBB. These findings highlight compound 10 as a promising candidate for the treatment of malignant brain tumors and demonstrate how macrocyclic scaffolds can overcome the limitations associated with conventional linear peptide

inhibitors. Additionally, will briefly discuss novel, orally bioavailable proteasome inhibitors that exhibit selective activity against the Plasmodium falciparum proteasome over the human constitutive and immunoproteasome.

Thrombin fuels pathogenic behavior of gut microbiota biofilms in Crohn's disease: a proteomic/N-terminomic approach

Isabella Orchard¹, Mélissa Pannier², Jean-Paul Motta², Antoine Dufour¹

Crohn's disease (CD) is an inflammatory bowel disease (IBD) characterized by severe inflammation of the gastrointestinal tract. Studies to further elucidate the etiology of CD have started to focus on gut microbiome changes that occur in CD, and the potential contribution of host factors in these changes. One host factor, the human protease thrombin, is produced by the human gut epithelium and is upregulated in the colons of CD patients. Thrombin has been shown to modulate bacterial biofilms and increase biofilm pathogenicity, though the mechanisms behind thrombin's impact on biofilms remain poorly understood. Thus, the aim of this project is to investigate the effects that human thrombin released from the gut epithelium has on microbial proteins of gut-derived bacteria grown as biofilms. In this project, I tested a variety of N-terminomics methods to develop an optimized protocol to analyze biofilms and determined that a hydrophobic tagging N-termini enrichment method was the best available method for this purpose. I performed this protocol, as well as an established proteomics protocol, on mono-species biofilms of Bacteroides thetaiotaomicron, Enterococcus faecalis, Escherichia coli LF82 and Escherichia coli NRG857c grown with or without thrombin. I then tested a carboxylate-modified sp3 bead cleanup method for removing contaminants to follow the optimized N-terminomic technique and the established proteomics protocol. To determine if this cleanup method is effective, further troubleshooting of the bioinformatics analysis step is required. In the future, this cleanup method could be used on the *N*-terminomics and proteomics samples of the five bacterial strains of interest prior to liquid chromatography and tandem mass spectrometry analysis (LC-MS/MS). Following LC-MS/MS analysis of these samples, I aim to determine the bacterial substrates of thrombin and the impact of thrombin on the proteomic profiles of bacterial biofilms. This information will help to elucidate the mechanism by which thrombin modulates biofilms in CD and may provide candidate targets for future CD therapeutics.

¹Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, AB, T2N 2T9, Canada

²Institut de Recherche en Santé Digestive (IRSD), 31300 Toulouse, France

Working in Biotech from an Early Career Perspective

John C. Widen¹, Maksim Osipov¹

¹Small Molecule Discovery, Tenvie Therapeutics, 161 Oyster Point Blvd, South San Francisco, CA

Not so long ago, I was a graduate student and postdoc in the sciences trying to decide between academia or industry, biotech or large pharma, primary undergraduate institution or research professor appointment. I won't read Tarot cards and tell anyone what to do, but I will discuss my career path and experiences working at small to medium sized biotech companies. I will cover common misconceptions about the pharma industry, how we spend hundreds of millions of dollars in our pursuit of discovering therapeutics, current trends in hiring, networking, what to put on CVs and resumes, and how to handle the interview process. I hope my talk will help with the career-related decision-making process and why working at a biotech company is the best option. I also hope to salt and pepper my talk with some science. Time allowing, I will discuss medicinal chemistry principles for developing CNS penetrant small molecule therapeutics, which is the focus of my current biotech company.

Immunoproteasome-Mediated Release of a Monomethyl Auristatin E Prodrug

Cody A. Loy¹ & Darci J. Trader^{1,2}

¹Department of Pharmaceutical Sciences, University of California – Irvine, 856 Health Sciences, Irvine, California, 92697, United States, ²Department of Chemistry, University of California – Irvine, 1102 Natural Sciences 2, Irvine, California, 92697, United States

Developing therapeutics that are effective in diseased cells, while remaining nontoxic to the surrounding healthy tissue remains a challenge in drug discovery. One technique that has been applied broadly is to cage the toxic molecule with a pro-moiety sequence that can be removed by an enzyme or external source to release the active compound in the desired location. Antibody-drug conjugates (ADC) have shown great efficacy in selectively delivering a toxic compound to the diseased site, typically cancerous cells. Although this method is effective at treating tumors with known antigens that can allow for the development of selective ADCs, other tumors that are more evasive remain a challenge to treat using this method. An approach that still relies on caging the compound from eliciting toxicity to healthy cells but can be liberated by an enzyme that is only being expressed in the cancerous cells, could alleviate the need for antibody recognition. The immunoproteasome (iCP) is a disease specific isoform that is expressed under conditions of inflammation such as interferon-y exposure. The iCP incorporates different catalytic subunits than the standard CP (sCP), allowing for the same substrate to be degraded into different peptide products between the two. Previously, we have identified a 4-mer peptide recognition sequence through a one-bead-one-compound library screen that is selective for the iCP. With this we have reported the design of a fluorescent probe that can monitor iCP activity in cells called TBZ-1. Here, we demonstrate swapping the fluorescent reporter for a chemotherapy agent, MMAE, leads to selective release and toxicity in cancerous cells expressing iCP, while healthy cells remain viable. This prodrug was effective at killing cancerous cells at low nM concentrations and was successful in reducing tumor volume in vivo. This provides the first therapeutically relevant use of an immunoproteasome prodrug targeting cancerous cells.

Characterizing the role of the rhomboid protease RHBDL4 in pancreatic cancer

Eric M. Jordahl¹, Sonya E Neal^{1,2}

¹Department of Cell and Developmental Biology, University of California San Diego, USA, ²Howard Hughes Medical Institute, Chevy Chase, MD, USA

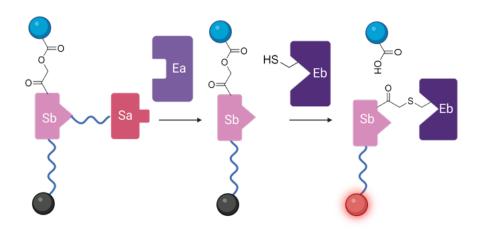
Pancreatic cancer is an aggressive disease with a survival rate of only 10%, 5 years post-diagnosis due to a lack of effective treatments. The predominant form (~95%) of pancreatic cancer is Pancreatic Ductal Adenocarcinoma (PDAC). PDAC is largely driven by the mutation of the oncogene, KRAS, a common hallmark of many cancers. Recent studies demonstrate that the endoplasmic reticulum (ER), an essential organelle where many proteins are folded, is important for promoting cancer growth and survival in KRAS mutant cancers, like PDAC. Patient sample databases show that an important ER protein, the rhomboid protease RHBDL4, is upregulated in pancreatic cancer. RHBDL4's canonical role in cells is cleaving misfolded proteins from the ER and targeting them for degradation by the proteasome, mitigating the toxic stress associated with accumulated misfolded proteins. This stress, when at high levels, can trigger apoptosis (programmed cell death), which cancer cells aim to avoid. In human PDAC cell lines, we made an RHBDL4 knockout (KO) and found that there is a drastic decrease in cell growth and increase in apoptosis compared to WT cells. However, role of RHBDL4 in PDAC cell health has yet to be elucidated. We aim to identify the role of RHBDL4 in PDAC cells and how this pathway drives tumor progression. We hypothesize that PDAC cells upregulate RHBDL4 to compensate for high levels of misfolded proteins, exploiting RHBDL4's quality control function to avoid ER stress driven apoptosis. This work aims to elucidate potential therapeutic avenues for PDAC targeting ER stress relieving machinery.

The inflammatory caspases and their substrates

Kolden Van Baar¹, Erik Gomez-Cardona¹, Jainilkumar Patel¹ and Olivier Julien¹

¹Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta

Caspase-1, -4, -5 are human cysteine proteases that play a role in inflammatory cell death, also known as pyroptosis. In response to bacterial and viral insults, caspase-1 is activated via the inflammasome in the canonical pyroptotic pathway, while caspase-4 and -5 are key activators of the noncanonical pyroptotic pathway. Pyroptosis has been linked to the inflammation and neuronal demyelination observed in multiple sclerosis (McKenzie, 2020). However, the substrates of these inflammatory caspases are largely unknown. Previously, Agard et al. identified 82 caspase-1 substrates, four caspase-4 substrates and no caspase-5 substrates using N-terminal labelling and mass spectrometry (LC-MS/MS). Importantly, this study reported that caspase-1 cleaves gasdermin D at residue Asp276, which results in the generation of N- and C-terminal fragments. The N-terminal fragments of gasdermin D can re-localize from the cytoplasm to the cell membrane, where they oligomerize and form pores at the cell surface, resulting in the uptake of water and release of inflammatory cytokines. Since the previous study only identified a handful of caspase-4/-5 substrates and given the recent advances in Nterminal labeling and mass spectrometry methods, we are re-visiting these two proteases and aim to identify novel caspase-4/-5 substrates.


We first expressed and purified active human caspase-4/-5. After the addition of the purified caspase to a THP-1 monocyte cell lysate, we labeled and captured the newly formed N-termini generated by caspase proteolysis and identified these cleavage sites using LC-MS/MS. Using this approach, we identify hundreds of caspase substrates. By studying these newly discovered caspase substrates, we hope to better define the biology of these two inflammatory caspases.

Sequential AND-gate Fluorescently Quenched Activity-based Probe for Selective Imaging of Cysteine Cathepsin Activity

<u>Shiyu Chen</u>¹, Jiyun Zhu¹, Shih-po Su¹, Emily Woods¹, Franco F. Faucher¹ and Matthew Bogyo¹

¹Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA

Cysteine cathepsins are a family of proteases shown to be involved in multiple stages of tumorigenesis. Here we report the design and synthesis of a new class of sequential AND-gate (SAND-gate) quenched fluorescent activity-based probes (qABPs) containing an acyloxymethylketone (AOMK) electrophile. These SAND-gate probes require the processing of a tumor specific enzyme fibroblast activation protein (FAP) before they covalently modified cathepsins and emit a fluorescent signal with significantly improved selectivity and sensitivity to tumor tissue. We demonstrated these probes in mouse models of mammary tumors and ex vivo biochemical profiling.

Identifying caspase-8 and caspase-10 substrates using N-terminomics

<u>Jainilkumar H. Patel</u>¹, Kolden Van Baar¹, Erik Gomez-Cardona¹, Olivier Julien¹ Department of Biochemistry, University of Alberta¹, AB, T6G 2H7, Canada

Caspases are cysteine-aspartic proteases that are involved in many cellular processes such as programmed cell death, apoptosis, cell differentiation and inflammatory cell death¹. These proteases are generally classified into one of three categories: initiator (caspase-2, -8, -9, and -10), executioner (caspase-3, -6, and -7), or inflammatory (caspase-1, -4, -5, and -12). Initiation of apoptosis through the extrinsic pathway typically involves the activation of caspase-8 and -10, resulting in the cleavage of specific substrates, including caspase-3. In addition to its role in apoptosis, caspase-8 has also been identified to have several non-apoptotic roles including, proliferation, and cell differentiation². While 62 protein substrates have been identified for caspase-8³, only a handful protein substrates have been reported for caspase-10^{4,5}, highlighting a potential gap in our understanding of these protease biological functions. The aim of this project is to acquire a comprehensive dataset of caspase-8 and -10's substrates by employing Nterminal labeling of the cleaved substrates and identification using mass spectrometry. To achieve this, I am expressing and purifying recombinant caspase-8 and 10 in E. coli and characterizing their enzymatic activity in vitro. I will then add the purified caspases in mammalian cell lysate to identify caspase-8 or -10 cleaved substrates. These cleaved proteins will then be labelled at their N-termini using a subtiligase-based N-terminomic approach, allowing for their identification using mass spectrometry. We hope our results will allow us to identify new biological roles for caspase-8 and -10, both in apoptotic and non-apoptotic functions.

Development of a caspace1-activated SWIR fluorescent probe for tumor detection and therapeutic monitoring

Shih-Po Su¹, Shiyu Chen¹, Jiyun Zhu¹ and Matthew Bogyo^{1,2}

Short-wave infrared (SWIR) imaging (1000–1700 nm) is particularly effective for non-invasive tumor visualization in deep tissues, offering clear advantages over traditional visible-light fluorescence imaging. For example, the liver is challenging to visualize with visible light fluorescence due to significant light scattering. In this study, we investigated the caspace1-activated fluorescent probe SP309 as a potential imaging biomarker. Our fluorescence-guided surgery experiments demonstrated that this approach is both feasible and effective at detecting tumor lesions, assisting in surgical decision-making. The results confirm the biocompatibility of SP309 and highlight its potential for in vivo imaging and fluorescence-guided surgery (FGS) in liver treatment.

¹Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States

²Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States

PCPSV: Profiling Caenorhabditis elegans Proteases under Structural Variation

Kyle Lesack¹, James Wasmuth², and Antoine Dufour^{1,3,4}

Structural variants (SVs) describe large alterations in chromosome structure with crucial roles in genome evolution and adaptation. Notably, deletions and duplications are key mechanisms of genetic diversification, with the latter being the primary source of novel genes. As a result, valuable evolutionary insights can be gained by characterizing SVs in natural populations, especially for those that impact genes or regulatory regions. Despite being widespread in natural populations, most SV research has been limited to laboratory adapted strains and experimental evolution. As a result, comprehensive profiles of the genes under structural variation in natural populations are lacking for most species.

In this study, we used Sniffles2 (v2.0.7) to call SVs in 14 wild *Caenorhabditis elegans* strains using PacBio DNA sequencing data. Functional annotation was then performed using Variant Effect Predictor (v.109.3), which identified high-impact SVs that overlapped with 1,485 deletions, 214 duplications, and three inversions (collectively affecting 1,258 genes). To determine which functions were likely impacted by SVs, an overrepresentation analysis was performed using the annotated gene sets from WormCat (V2). Notably, proteolysis featured prominently among the overrepresented functional categories. To further characterize the relationship between SVs and proteolysis in *C. elegans*, the genes associated with high-impact variants were then queried against the *MEROPS* database (release 12.5) to identify those representing proteases and their inhibitors. A total of 17 proteases were affected by SVs (15 deletions and 2 duplications) and an additional five protease inhibitors harbored high-impact deletions.

These results highlight the importance of proteolysis in the evolution of *C. elegans* and suggest that SVs in proteases may facilitate how these worms adapt to diverse habitats around the world. This study also demonstrates the feasibility of genome-wide, population-scale SV profiling and could serve as a first step towards more comprehensive surveys of proteases under structural variation in other species.

¹Department of Biochemistry and Molecular Biology, University of Calgary, AB, T2N 2T9, Canada

²Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada

³Department of Medicine, University of Calgary, AB, T2N 2T9, Canada

⁴Department of Physiology & Pharmacology, University of Calgary, AB, T2N 2T9, Canada

Oxadiazolone-based Probes for Selective Detection of Implant Biofilms in Chronic *Staphylococcus aureus* Infections

<u>Jeyun Jo¹</u>, Emily C. Woods¹, Ki Wan Park², Tulsi Upadhyay¹, Althea T. Hansel-Harris³, Zhen Xiao⁴, Matthias Fellner⁵, Jianghong Rao⁴, Stefano Forli³, Tulio A. Valdez², and Matthew Bogyo¹

Department of Pathology, Stanford University School of Medicine¹, Stanford, California 94305, United States

Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine², Stanford, California 94305, United States

Department of Integrative Structural and Computational Biology, Scripps Research³, La Jolla, California 92037, United States

Department of Radiology, Molecular Imaging Program at Stanford, Stanford Medicine⁴, Stanford, California 94305, United States

Department of Biochemistry, University of Otago⁵, Dunedin 9054, New Zealand

Staphylococcus aureus (S. aureus) is a major bacterial human pathogen responsible for a wide range of infections, from skin and soft tissue infections (SSTIs) to life-threatening sepsis. S. aureus can form biofilms on the surface of prosthetics, often leading to chronic infections associated with implant biofilms. However, the identification of implant infections usually involves invasive surgical procedures to collect samples directly from the implant. Therefore, there is urgent need for novel, non-invasive method to detect surgical implant infections. We previously designed FphE selective probe JJ-OX-007 and demonstrated its ability to selectively image S. aureus. In this study, we modified the fluorophore of JJ-OX-007 to develop a Cy5-labeled version, JJ-OX-012, suitable for in vivo application. JJ-OX-012 showed strong in vitro labeling of S. aureus. with little to no labeling of other species such as Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. Furthermore, JJ-OX-012 enabled non-invasive fluorescent imaging for selective detection of *S. aureus* biofilms *in vivo* in a mouse surgical implant infection model. These results highlight the potential of FphE-targeted probes as powerful tools for selective detection of S. aureus biofilms in vivo and suggest their future application in the diagnosis and monitoring of implant-associated infections.

Ab initio computational modeling of covalent macrocyclic FphB serine hydrolase inhibitors

<u>Althea T. Hansel-Harris</u>¹, Manuel Llanos¹, Matthew Holcomb¹, Sijie Wang², Jeyun Jo², Matthew Bogyo^{2,3}, and Stefano Forli¹,

Department of Integrative Structural and Computational Biology, Scripps Research¹, La Jolla, CA, 92037, United States

Department of Pathology, Stanford University School of Medicine, Stanford², California 94305, United States

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford³, California 94305, United States

Antibiotic resistance in Staphylococcus aureus is a growing global threat, demanding new therapeutic targets. The serine hydrolase FphB has been identified as a key virulence factor, with the Bogyo Laboratory recently discovering two macrocyclic inhibitors (FphB-OX-5 and FphB-OX-14) via mRNA display. However, the lack of an FphB crystal structure limits experimental insights into inhibitor binding. To address this, we used an ab initio computational approach, combining AlphaFold modeling, cosolvent molecular dynamics, and reactive AutoDock-GPU docking with pre-sampled macrocycle conformations. Further molecular dynamics simulations refined the binding poses and revealed stable inhibitor complexes that align with experimental mutagenesis data. Our findings demonstrate that ab initio computational modeling can provide critical insights into drug binding, informing structure-activity relationships for novel antibiotic strategies.

Proteomic Study of H1N1 Influenza Infection in Mammalian Cells

Justin Zabos¹, Shu Luo¹, Mohamed Elaish², Tom Hobman² and Olivier Julien¹

Influenza A viruses (IAV) are a group of single-stranded RNA viruses from the family Orthomyxoviridae that are partially responsible for seasonal flu outbreaks in humans. The H1N1 subtype of IAV also has pandemic potential, sparking the 1918 Spanish flu and 2009 swine flu pandemics. Over the years, various transcriptomic and proteomic methods have been used to study proteome changes in influenza-infected cells. However, recent advances in the sensitivity and resolution of mass spectrometers have enabled deeper proteome coverage and the identification of low-abundance proteins, many of which may be involved in viral replication or host response mechanisms. Here, we employed label-free quantitative proteomics to determine proteome changes in bulk A549 human lung epithelial cell cultures infected with A/PR/8/34 (H1N1) at 8, 24, and 48 hours post-infection, compared to uninfected controls. Using an Orbitrap Exploris 480 (Thermo Scientific) in data-independent acquisition (DIA) mode, we quantified 6,497 unique protein groups. Of these, 288 host protein groups were significantly increased and 439 were significantly decreased at least one time point during the infection time course. Proteins involved in innate and adaptive immunity, proteolysis, and peroxidase activity increased in abundance during infection, while proteins involved in lipid metabolism, lysosomal function, and aldo-keto reductase activity decreased in abundance. To investigate the heterogeneity of these responses among single infected cells, we also developed and optimized a label-free single-cell proteomics workflow for mammalian cells. Our optimized single-cell proteomics workflow demonstrates reproducible proteome coverage and throughput with minimal sample loss, quantifying over 2000 proteins per cell. Taken together, these studies enhance knowledge of H1N1 infection mechanisms and propose a novel experimental protocol to study these mechanisms at single cell resolution.

¹Department of Biochemistry, University of Alberta, AB,T6G 2R3, Canada

²Department of Cell Biology, University of Alberta, AB, T6G 2R3, Canada

Covalent PSMA-based probe library for targeted prostate cancer therapeutics

Vic M Hempstead¹, Jeyun Jo², and Matthew Bogyo²

Prostate-specific membrane antigen (PSMA) is a well-established and highly specific prostate epithelia cell membrane antigen that has been identified as a valuable target in the treatment of prostate cancer. Since PSMA is overexpressed in prostate cancer cells, therapeutics that target PSMA with high specificity have previously been leveraged to improve surgical margins with probes and radioligand therapies. But current highly specific PSMA probes bind non-covalently which limits their therapeutic potential due to transient interactions. Conversely, existing covalently binding PSMA radioligands are not specific enough and show significant off target effects and potential damage to kidneys and salivary glands.

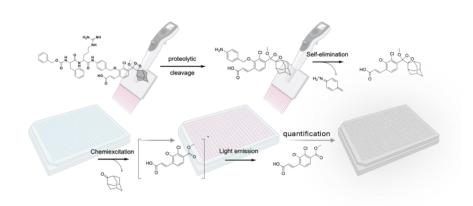
Prostate cancer is the second leading cause of cancer in men worldwide, but current treatments lack potency and specific targeting. To date, radical prostatectomies are the most effective treatment for prostate cancer but can lead to lifelong incontinence and impotence. The development of advanced covalent PSMA probes will help avoid complications and the need for radical surgery. Covalent probes will meaningfully impact treatment outcomes by allowing long retention of potent treatment in affected areas that non-covalent chemistries lack.

Here, we plan to synthesize a library of high affinity PSMA ligands containing a reactive electrophile to target and bind covalently to prostate tumors with high enough selectivity to avoid off-target effects. The library will systematically explore how the position of the covalent warhead impacts covalent binding specificity and affinity for PSMA-positive cells. This will be used to identify the best covalent probe candidates which can further be functionalized as imaging and therapeutic agents via a chemical handle. With this, we plan to generate a comprehensive and modular library of optimized covalent ligands with various fluorescent agents and therapeutics. Ideally, these probes will have the potential to improve outcomes for prostate cancer patients and provide a modular platform to explore PSMA targeting therapies.

¹Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States

²Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States

Design, Synthesis and Characterization of Chemi-luminescent Probes for non-invasive Diagnostic Imaging


<u>Jiyun Zhu¹</u>, Sara Gutkin², Shiyu Chen¹, Doron Shabat², Roy Park³, Tulio Valdez³, Matthew Bogyo¹

Chemiluminescence has emerged as a powerful biosensing strategy for detecting bacterial infections and other biological targets, due to its inherently high signal intensity and low background noise. However, the diagnostic potential of chemiluminescent probes remains underexplored.

Traditional chemiluminescent systems, such as those based on luminol, often lacks specificity. Inspired by the substrate preference, we developed a series of chemiluminescent probes incorporating the substrate specificity of human cathepsin L (hCatL), a highly expressed cysteine protease in macrophages present in a wide range of diseases. Upon enzymatic cleavage by hCatL, these probes generate a high-intensity signal with a favorable signal-to-noise ratio.

The probes were evaluated using steady-state kinetic assays, which revealed classic Michaelis-Menten behavior, confirming both their specificity and catalytic efficiency toward hCatL. Furthermore, enzymatic and cellular assays demonstrated a dose-dependent relationship between luminescent signal intensity and enzyme or cell concentration, as measured by both plate-reader and imaging-based platforms.

Together, these findings demonstrated the potential of our chemiluminescent probes as sensitive, non-invasive diagnostic tools for diseases marked by elevated cathepsin L activity.

¹Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA.

²School of Chemistry, Tel Aviv University, Tel Aviv-Yafo, 6997801, Israel,

³Department of Otolaryngology, Stanford University, Stanford, CA 94305, USA

Evaluating the 20S proteasome of the early-branching eukaryote *Giardia lamblia* as a valuable drug target

<u>Diego Trujillo^{1,2}</u>, Pavla Fajtova², Yukiko Mayamoto³, Lars Eckmann³, Anthony J. O'Donoghue²

¹Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, 92037, USA

²Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA

³School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA

Giardia lamblia (G. lamblia) is a protozoan parasite that colonizes the intestinal tract and causes diarrheal disease with >300 million annual cases worldwide. Giardiasis, the disease caused by G. lamblia, is primarily treated with oral nitro-heterocyclic drugs. These drugs can have significant adverse effects, and resistance occurs in a significant fraction of patients. The proteasome is an essential large multi-subunit protease complex found in all eukaryotes. In our preliminary studies, we have validated the Giardia proteasome (Gl20S) as a druggable target and have shown that the Gl20S is significantly different structurally and evolutionarily from its human counterpart (c20S). We hypothesize that inhibitors can be developed to selectively target the Gl20S, which could yield more effective and safer drug candidates.

In this project, I will evaluate the substrate specificity and structural differences between the Gl20s and the c20S. I will use Multiplex Substrate Profiling by Mass Spectrometry to uncover substrate cleavage preferences for each subunit. The substrate specificity profile of the Gl20S will be directly compared to profile of the c20S. Cryo-EM structural and docking studies will be done in parallel to understand how specific substrates and currently available inhibitors are fitting into the Gl20S. Leveraging insights from structural and substrate specificity differences, we aim to design ≈30 inhibitors tailored to selectively target the parasite proteasome. These inhibitors will be evaluated in cellular and biochemical assays, followed by structural optimization guided by structure-activity relationships. Our long-term goal is to develop an oral proteasome inhibitor as a treatment for *Giardia* infections.

Identification of microbial proteases that regulate Protease-activated receptor 2 to control barrier function, pain and inflammation in the gut

<u>Kristyna Blazkova^{1,#}</u>, Markus Lakemeyer^{2#,*}, Rocco Latorre^{3,4#}, Dane D. Jensen^{3,4,5}, Hannah M. Wood⁶, Franco F. Faucher¹, Yatendra Mulpuri³, Paz Duran de Haro^{3,4,5}, Laura J. Keller¹, Alan E. Lomax⁶, Nigel W. Bunnett^{3,4*} and Matthew Bogyo^{1,7,*}

Dept. of Pathology, Stanford University School of Medicine¹, Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena², Department of Molecular Pathobiology, New York University³, Pain Research Center, NYU Dental⁴, Translational Research Center, NYU Dental⁵, Queen's University, Canada⁶, Dept. of Microbiology and Immunology, Stanford University School of Medicine⁷.

Protease-activated receptor 2 (PAR2) has been implicated in inflammatory bowel disease (IBD). Yet, clear molecular connections between gut microbiota and PAR2 activation remain elusive. PAR2 is activated by the proteolytic cleavage of its extracellular domain by a range of proteases. PAR2 regulates barrier integrity, inflammation, and pain in the gut and, therefore, represents a potential checkpoint in disease onset and progression. Notably, protease activity is greatly increased in the gut lumen of IBD patients.

We screened conditioned media of a library of 140 gut commensal bacterial strains using a substrate corresponding to the N-terminal domain of PAR2. Using chemoproteomics we identified several candidate proteases and prepared knock-out strains. Using multicellular and *in vivo* models we characterized the effects of microbial proteases on barrier function (human intestinal organoids), inflammation and pain signaling (mouse models) through PAR2-dependent regulation.

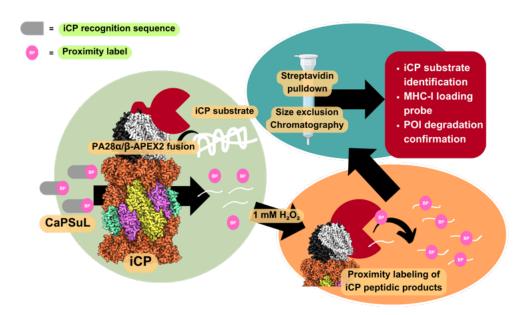
We found that 19% of strains, mainly from *Bacteroides*, cleaved the N-terminal domain of PAR2. We investigated *B. fragilis* and identified a novel protease, Bfp1, that activates PAR2 through proteolytic cleavage and triggers downstream signaling. Using human ileal organoids from healthy donors, we found that Bfp1-containing supernatants disrupt barrier function. In a mouse model, we observed both increased expression of pro-inflammatory cytokines as well as increased pain signaling that was dependent on both Bfp1 and PAR2.

PAR2 regulation by microbial-derived proteases is relatively common in gut commensal bacteria. In particular, we identified a novel microbial protease Bfp1 that directly cleaves and activates PAR2 signaling. PAR2 activation by Bfp1 triggers impaired barrier function, inflammation and pain as shown in multicellular, ex vivo and in vivo models suggesting it is a viable target to alleviate IBD symptoms.

Our study provides a molecular connection between secreted microbial proteases and IBD symptoms with a particular focus on one such protease – Bfp1 in *B. fragilis*.

Allosteric Role of Heparin on Human β-Tryptase Structure and Activity

Rachell Martinez-Ramirez¹, Tamar Basiashvili², Henry Maun¹, Swapnil Ghodge¹, Mark Ultsch³, Bob Lazarus¹


¹Department of Biological Chemistry and Early Discovery Biochemistry, Genentech, USA, ²Department of Biological Chemistry, University of California, San Diego, CA, USA, ³Department of Structural Biology, Genentech, USA

Human β-tryptase is a trypsin-like serine protease, highly abundant in mast cell secretory granules, and part of an inflammatory response upon mast cell activation. It is active as a donut-shaped homotetramer bound to heparin with 4 active sites inside the pore. Dissociation of active tetramers results in inactive monomers. While it is known that heparin stabilizes the tetramer, we found that heparin also allosterically activates β-tryptase, although the precise mechanism remains elusive. Here, we present the first crystal structure of β-tryptase bound to a pentameric heparin oligosaccharide solved at 2 Å, offering insights into its allosteric mechanism. We identified 5 key positively charged surface-exposed residues in relatively close proximity (R187, R188, K159, K26, K202), which constitute the heparin binding site. We assessed their importance in tetramer formation and enzymatic activity by mutation to alanine or glutamate to remove or disrupt interactions of β-tryptase with heparin. Tetramerization was evaluated by size exclusion chromatography, while activity was measured using the chromogenic substrate S-2288. The R187A and R188A mutants reduced tetramer formation by ~21% while enzymatic activity was moderately reduced. With charge reversal mutations (R188E, K159E, and K26E), tetramer formation was dramatically reduced by ~77%. Notably, tetramers R188E and R187E/R188E showed 89% and 100% loss in activity, respectively despite being distal to the active site. Since R188 is next to D189 at the bottom of the S1 specificity pocket, we hypothesize that R188 provides an allosteric link between heparin binding and enzyme activity, as well as tetramer formation required for fully active β-tryptase.

Development of Immunoproteasome Substrate Labeling Assays (iSLAy)

Juan Dantis¹, Darci J. Trader^{1,2}

The immunoproteasome (iCP) is a isoform of the proteasome that is expressed constitutively in immune cells and can be induced upon inflammatory insults in others. The iCP differs from the standard proteasome (sCP) in its catalytically active subunits, LMP2 (β1i), MECL-1 (β2i) and LMP7 (β5i), attenuating its cleavage preferences, producing peptides that are more amenable for MHC-I binding, rendering it vital to antigen presentation. Compared to the sCP, little is known of the iCP's interactors, including its substrate profile. At present, no proteomic platform is selective to profiling the iCP. Herein, we describe a novel technique we have named Immunoproteasome Substrate Labeling Assays (iSLAy). We expand the capabilities of a mature proximity labeling strategy, APEX2-MS, a platform demonstrated to be adept at profiling transient protein interactions such as between enzymes and their substrates.1 With our discovery of an iCP-specific peptide recognition sequence (ATMW), we introduce the concept of Caged Proximity Substrate Labels (CaPSuLs), comprised of a proximity label that is liberated only upon the iCP-mediated hydrolysis of the sequence. This allows for subsequent activation of the label by APEX2 fused to iCP regulator, PA28, and labeling only the proteome proximal to the iCP. With the development of this technology, we hope to isolate iCP substrates and glean insights on the properties of the iCP and its role on the cellular phenotype.

Figure 1. Overview of iSLAy technology. This new platform that is activity and proximity-based will be able to tag and enrich iCP protein substrates, allowing for their identification.

¹ Department of Chemistry, University of California, Irvine

²Department Pharmaceutical Sciences, University of California, Irvine

Phenotypic screening of covalent fragment libraries for growth inhibitors of Staphylococcus aureus

<u>Ifeanyichukwu E. Eke¹</u>, Matthew B. Bogyo¹

¹Department of Pathology, Stanford University, USA

The increasing emergence of antibiotic resistance in *Staphylococcus aureus* calls for the need to develop new chemical matter or therapeutic targets for the infection. Given the ability of electrophilic fragments to target residues that are essential for the activity of a bacterial enzyme, the evolution of target-based resistance against the fragments is usually associated with fitness defects in the resistant bacteria. Therefore, electrophilic fragments represent interesting chemical matter that can be further developed as potential antibiotics for S. aureus. In this study, we screened the Enamine 1600-serine and 3200-cysteine fragment libraries for growth inhibition of S. aureus and identified 96 compounds that inhibited the growth of the bacteria. This represents a hit rate of 1.31% for the serine library and 2.34% for the cysteine library. Chloromethyl ketones (63/75) and cyanoacrylamides (8/75) were the major compound classes in the cysteine hits, while nitroethyl benzenes were common in the serine hits. Given the over-representation of chloromethyl ketones fragments in the cysteine hits, we conducted an activity cliff analysis and uncovered the structure-activity landscape of the series. Overall, this screen represents a good starting point for the characterization of bacterial growth inhibitors from covalent fragment libraries that can be further developed as potential antibiotics.

Structure-guided Identification of Serine Protease Inhibitors from Biased Fab Phage-display Libraries

<u>Kyle James Anderson¹</u>, Melody S. Lee², Natalia Sevillano³, Gang Chen⁴, Morena Spreafico³, James A. Wells³, Matthew P. Jacobson³, Sachdev S. Sidhu⁴, and Charles S. Craik³

¹Biophysics Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA

²Graduate Group in Chemistry and Chemical Biology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA

³Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA

⁴Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada

We designed a biased Fab phage display library capable of efficiently identifying antibody-based serine protease inhibitors. Using key inhibitory CDR H3 motifs derived from potent matriptase-targeting antibodies as a foundation, we constructed six synthetic libraries with a total diversity of ~1010. From selections against matriptase, we identified sixteen Fab inhibitors with K_i values below 100 nM—demonstrating over 100,000-fold improvement in potency relative to the circularized peptide motif alone. Selections against TMPRSS2, a homologous serine protease implicated in viral entry and aggressive prostate cancers, yielded several selective inhibitory antibodies. While these initially exhibited modest inhibitory potency and binding affinity, an affinity maturation library guided by structure-based predictions improved both properties. AlphaFold models of these complexes provided a structural framework to interpret the binding mode of the antibodies and to rationalize, from a structural perspective, the merits of our biased library design in enabling discovery of serine protease inhibitors. These models further enabled high-throughput binding energy predictions across interface residues, guiding the design of improved mutants. The predictive accuracy of these models was supported by results from the affinity maturation library and validated through targeted mutagenesis. This work establishes a promising framework that integrates biased Fab libraries with structurebased computational analysis, enabling the accelerated development of selective inhibitory antibodies to investigate serine protease structure, function, and roles in disease.

Structure-Based Design of Inhibitors of the *Mycobacterium tuberculosis* 20S Proteasome Suppress Persistence of the Bacterium in Infected Macrophages

Xilin Gu¹, Peter J. Rowheder¹, Alexander Mohapatra^{2,3}, Zanlin Yu^{4,5}, Shichun Lun⁶, Xiuju Jiang⁷, Nick Yan^{1,8}, Yifei Chen^{4,5}, Jason E. Gestwicki^{1,8}, Gang Lin⁷, William R. Bishai⁶, Joel D. Ernst^{2,3}, Yifan Cheng^{4,5}, Charles S. Craik¹, and Jason K. Sello¹

¹Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 USA, ²Institute for Global Health Sciences, Center for Tuberculosis, University of California San Francisco, San Francisco, USA; ³Department of Medicine, Division of Experimental Medicine, University of California San Francisco, San Francisco, California 94143, USA; ⁴Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, 94143 USA; ⁵Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, 94143, USA; ⁶Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, Maryland 21231-1044, USA; ⁷Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA; ⁸Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158 USA

The remarkable and problematic capacity of *Mycobacterium tuberculosis* to survive within macrophages is dependent on a functional 20S proteasome that is structurally and functionally analogous to its mammalian counterpart. It has been proposed that this enzyme is critical for the bacterium's response to nitrosative stress. Here, we report the structure of a rationally designed and species-selective inhibitor of the Mtb 20S proteasome in complex with the enzyme. The inhibitor was inspired by the syringolin natural products that are covalent proteasome inhibitors that mimic proteasome substrates. In this case, the structure revealed that the inhibitor also mimics a proteasome substrate but engages the active site in a completely different fashion than the syringolin natural products. The conformation of the designed inhibitor in the active site is strikingly reminiscent of that of an acyclic proteasome inhibitor in its complex with the *Mtb* enzyme. The structure was used to guide the design of a more potent and selective inhibitor, as evidenced in kinetic assays for enzyme inhibition. The first and second-generation inhibitors are permeable to and active in M. tuberculosis. They also sensitize the bacterium chemically and pharmacologically-induced nitrosative stress in vitro. Importantly, they suppress the persistence of live mycobacteria in murine and human macrophages.

Investigation of cysteine proteases in *Bacteroides cellulosilyticus* for desensitization of Protease-activated receptor 2

Laney Flanagan¹, Kristyna Blazkova², Markus Lakemeyer³, Rocco Latorre^{4,5}, Daniel Abegg⁶, Nigel W. Bunnett^{4,5}, and Matthew Bogyo²

Protease-activated receptor 2 (PAR2) is a G-protein coupled receptor that is activated by proteolytic cleavage of its N-terminal extracellular domain. Due to its role in inflammation, pain, and barrier integrity in intestinal epithelial cells, PAR2 is implicated in inflammatory bowel disease (IBD) and has been shown to be modulated by several gut commensal microbial proteases. One bacterial strain identified in a screen for PAR2 cleavage is Bacteroides cellulosilyticus, a common gut commensal which has been associated with the microbiota of healthy patients. Screening and chemoproteomics of B. cellulosilyticus with the cysteine protease inhibitor E64 identified two putative cysteine proteases that could be responsible for its PAR2 cleavage activity. Using a subset of PAR2 N-terminal extracellular domain substrates, we determined that the B. cellulosilyticus supernatant cleaves further C-terminal than the canonical activation site and could potentially be desensitizing PAR2 to cleavage by pro-inflammatory microbial proteases. Here, I plan to create a knockout strain to confirm the function and identity of these proteases, then explore effects of PAR2 desensitization in gut colonoids. This raises the possibility of probiotic development for IBD patients and will give greater insight into the relationship between microbial proteases in the gut microbiome.

¹Department of Chemical and Systems Biology, Stanford University School of Medicine;

²Department of Pathology, Stanford University School of Medicine;

³Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena;

⁴Department of Molecular Pathobiology, New York University;

⁵Pain Research Center, NYU Dental;

⁶University of Illinois Chicago.